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A plan ?

What Is optimization ?
|s optimization useful ?
IS optimization easy ?

Is optimization always hard ?
Can optimization help with your diet ?
Can we trust optimization ?

Can optimization beat computer chip makers ?



1.
What 1s Optimization ?



Modelling — Decision

1. Model a real-word situation mathematically
2. Choose the best feasible decision

Decision — vector of variables
Best —  Objective fonction
Feasible — constraints

Variables+objective+constraints — optimisation
A mathematical tool for decision making



Mathematical formulation

Variables : x € R"
Objective function: f: R" > R:x = f(x)

Constraints D C R"

min, ¢ gn f(x) suchthat x €D



A few simple examples

Find rectangular box of a given volume V
with the minimum surface

MiN(qp cyer® 2ab + 2bc + 2ca s.t. abc =V

Find the diameter of a shape S in the plane

Mmaxyegpzyer? X — Yyl s.t. x €S,y €S

Find the fastest path to your destination
(in your GPS device) — binary variables



Terminology

nlied Mathematics

Operations Research

Quantitative methods for decision making
Management Science

Industrial Engineering

Mathematical Programming
Optimization = Optimisation
Mathematical Optimization

A~

d. DGll.IU |

IAIM

Opti



Optimization : a vast domain

Deterministic or stochastic problem
Certain or uncertain data
Single or multiple objective
Explicit or black-box characteristics
Continuous or discrete
Linear or non-linear
Constrained or unconstrained
etc.
Presentation will focus on a small part




2.
Is Optimization useful ?



A wide variety of applications

Planning and scheduling

Production, timetabling, crew scheduling
Design

Structural design, network design

Economics and finance
Portfolio optimization, Nash equilibria

Location and transport
Faclility location, routing, tours



INFORMS Edelman award 2008

Dutch raillways

In 2006 : Schedule optimisation for
passengers, trains and personnel

After one year .

Delays reduced by 17%
Passengers increased by 10%

Profit increased by € 40M



Engineering applications

 Airbus : structural optimization of wings
(min weight for given strength )

 Radiotherapy : dose optimization
(modulate a moving beam)

e Spectrum optimization in
telecommunications (your next modem)

o Astrophysics : optimize diffraction masks
(planet detection)

e And much much more ...



Optimization 1s important

Mathematics

Versus

Optimization

et us ask the modern Oracle ...
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Mathematical optimization - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Mathematical optimization

In mathematics. computational science, or management science, mathematical
optimization (alternatively, optimization or mathematical programming) refers to ...

=+ Optimization problems - Motation - History - Major subfields

optimization (mathematics) -- Britannica Online Encyclopedia
www_britannica com/EBchecked/topic/430575/optimization

optimization (mathematics). collection of mathematical principles and methods used
for solving quantitative problems in many disciplines, including physics. ...

Combinatorics & Optimization
www.math.uwaterloo.cafco/
Combinatorics & Optimization Website.

Peter Richtarik, L ecturer, optimization, mathematics. University of ...
www maths. ed ac ukd/~nchtank/

Peter Richtarik. Assistant Professor School of Mathematics 6317 JCMB The King's
Buildings University of Edinburgh Edinburgh, EH9 3JZ e-mail: first_last at ...

Multidimensional Optimization - Optimization - Mathematics Library ...
www.extremeoptimization.com/.._/Multidimensional_Optimization.as_.

by C Visual - Cited by 4 - Related articles

Finding the minimum or maximum of a function in many vanables is one of the most
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Extreme.Mathematics.Optimization Namespace - Reference ...
Mons www_extremeoptimization com/.. (Extreme Mathematics.Optimizatio

The Extreme Mathematics.Optimization namespace contains classes that perform
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g optimization of functions in one or more vanables, including linear, quadratic ...

The web TU Darmstadt - Mathematics - Optimization
PE‘QEE: from www._mathematik tu-darmstadt. def~bokowski/
Belgium juergen [at] bokowski.de. Office: $2-15/307. Phone: 16-2489. Gooseneck Complete

Misic saaick tooks graph with 12 vertices on a surface of genus 6, Foto- M. Hahn. Teaching: ...

Applied Mathematics: Optimization - Free E-Books
www_e-booksdirectory.com » Mathematics

Applied Mathematics: Optimization - list of freely downloadable books at E-Books
Directory.




Googlefight : verdict

Mathematics < Optimization : 69 200

Versus

Optimization < Mathematics : 38 600




Opt-Art, by R. Bosch

A single loop !




3.
Is Optimization easy ?



Algorithmic black-box optimization
f* = min, crn f(x) suchthat x €D

* Rules of the game: the black box
— Give me points in D : x() x@) xG)
— 1 will return the values of f : f(x1), f(x®), ...
— Nothing else is known about the function
e Goal: find a good solution quickly
— As few evaluations as possible
— With prescribed accuracy ¢ f(x™) — f* < ¢



Looking at the worst case

* Typical theorem:
For a given class of functions, any
method must take at least some number
of evaluations on some function

e Must hold for any method

« Main tool for proof: resisting oracle



Some games cannot be won

e Typical theorem:
For a given class of functions, any
method must take at least some number
of evaluations on some function

* For some functions, game Is always lost
— discontinuous functions
— functions with very quick variations
—tiny and complicated domain D



Optimization is hard.
the theorem

Among the class of functions with n variables

defined on the unit box {x | 0 < x;
whose variation Is not too large in t

fx) = fO)I <Llx—yl

< 1Vi}
e Sense

CO

for any method there exists a function such
that accuracy ¢ Is not reached before

n

L
IZJ evaluations



Far-reaching consequences

i
2&
Consider an easy pro

Some 1-variable prob
Some 10-variable pro

n

evaluations
nlem with L=2 and €= 1%
em must take 100 iter.

nlem must take 1020 jter.

Life Is too short for such problems!

« Uniform grid search

IS worst-case optimal

* Result does not really improve for smoother f



3.
Is Optimization always hard ?



Optimization 1s not always hard

No hope of guaranteeing resolution of
optimization problems with 10 variables

Two ways to react:

Ignore theorem

Try you luck!

Nullify theorem

Force your luck!
new problem class




A new class: linear optimization

We voluntarily restrict ourselves to a problem
class involving only linear functions

min, ¢ g f (x) suchthat x €D

Linear objective function f

Linear constraints, which gives polyhedron D



A polyhedron

Application examples:

Production problems, assignment problems,
transport problems, flow problems, etc.



The father of linear optimization

RoBIN WiLLiamMs Mart Damon

Georges B. Dantzig

(1914-2005)
American statistician
Stanford Professor
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Simplex method

Dantzig’s real contribution is not the definition
of linear optimization but the invention of
the simplex method to solve it

* Problem look continuous, but is In reality
essentially combinatorial

e Optimal solution must lie on vertex of D

» Algebraic description of vertices +
Improving moves from vertex to vertex



Algorithmic complexity

An efficient algorithm must
— Solve the problem (at least approximately)
— In a finite amount of time (must eventually stop)

— Or, better: in an amount of time bounded by a
function of the problem size

Essential distinction
— polynomial-time complexity (= easy)
— exponential-time complexity (= hard)



Polynomial always beats
exponential, eventually

n n’ 2™ n° /2"
20 | 3.05 seconds 1 second 3.05
40 | 1.7 minutes 12.1 days 9.3 x 107?
60 | 12.9 minutes | 349 centuries | 6.7 x 1010

General optimization Is provable exponential
Could linear optimization be polynomial ?



Algorithmic complexity
for linear optimization methods

Georges Dantzig (1914-2005)

Proposes in 1947 the simplex method for linear optimization, very
efficient in practice but whose algorithmic complexity is unknown

V. Klee et G. Minty (1972)
Show that the simplex method is exponential in the worst case

L. Khachyan (1978)

Proves that the ellipsoid method (due to Shor) is polynomial in the
worst ; it is however very slow in practice!

N. Karmarkar (1984)

Proposes a new type of method :interior-point methods, that are both
polynomial in the worst case and very efficient in practice (often
more than the simplex method)



Optimization before Dantzig:
a few pioneers

Simplex method is the start of modern era of optimization

e Leonid Kantorovich (1912-1986)
Linear optimization en 1939! (Nobel prize in 1975 with Koopmans)

e John Von Neumann (1903-1957)

Game theory (minimax theorem en 1928, link with linear optimiz.)

o Carl Friedrich Gauss (1777-1855)

Steepest descent method (non-linear optimization)

 Leonhard Euler (1707-1783)

Calculus of variations (infinite-dimensional optimization)

* Pierre de Fermat (1601-1665)

Light: takes minimum-time path (already by Hero of Alexandria )

 Nature!
In physics: least action principle, minimum energy principle



An example of linear
optimization

or

Can optimization help
with your diet ?



The diet problem

Eating not just a good breakfast, but an optimal breakfast.

Eight foods to choose from:

1. pancakes = 1,
milk = Lo
freshly squeezed orange juice = 3
scrambled eggs = x4
Weetabix, a high-fiber cereal = x5
fresh blueberries = x4

bacon = x7

© NS G e W N

vitamin /mineral pills = xg Source: M. Wright



Source: M. Wright



Our goal is to find the cheapest breakfast satisfying

daily fiber > 120, daily calcium > 100, and all z’s > 0.

(Can’t eat —5 units of a food.)

food fiber | calcium | cost
pancakes 5! 10 3
milk 0 40 1
orange juice 4 5 3
eges 8 0 3

'eetabix 100 20 10
blueberries 50 20 5
bacon 0 0 10
pills 30 400 2

Source: M. Wright



With this (apparently sensible) formulation, what’s the optimal
breakfast??

1.14 units of Weetabix and .19 units of vitamin/mineral pills.

Yuck. Not even milk for the Weetabix!
Source: M. Wright



The original diet problem

Compute the optimal daily diet for US soldiers
Satisfy nutritional requirements
Minimize the cost

/7 types of food, 9 nutritional requirements

Solved in 1947 by Jack Laderman’s team In
120 man-days

Optimal cost found: $39.69 per year



Duality

or

Can we trust optimization ?



Trust an optimal solution ?

Difference between solving

— A system of equations : 0 =1f;(x) = f,(X) = ...

— An optimization problem: min f(x)

How ?

— For a system of equations:
simply replace x in f,(x), f5(x), ...

— For an optimization problem : how ?



Generate bounds for linear optimization

Consider the small problem

r1+x <1 (a)

x To + X3 S 2 (b>

f* = max x4 2x9+ 3x3 such that o+ 3z < 9 (¢
a. Vector x = (1,0,2) is feasible and corresponds to

objective value equal to 7
= lower bound f* > 7

b. Combine the constraints according to (a) + (c)
(1 +x2) + (22 +323) < 149 & 21+ 229+ 323 < 10
= upper bound f* < 10



Finding better lower bounds

1+ a9 < 1 (CL)

. 5132—1—5133 S 2 <b>
[ = o O S el et S o g (o
X3 S 3 <d>

a. Lower bound can be improved: find a better vector
xr = (2,—1,3) gives an objective function equal to 9
= lower bound f* > 9

To find better vectors we may use the simplex method



Finding better upper bounds

T+ To
To + T3
To + 313
L3

=

()
=

f* = max w1+ 2x9+ 3xs such that

VAR VANRVAN VAN
W © DN
g?AA

a.r = (2,—1,3) = lower bound f*>9

b. Upper bounds can also be improved:

combining the constraints according to (a)+(b)+2(d)
T1+To+xotx3+2x03 < 14242X3 & 214+229+3x3 < 9

= upper bound f* <9 = (2,—1,3) is optimal!



How to find better upper bounds?

r1+ a9 < 1 (CL)

. x2+$3 S 2 <b>
[ = o my -G g vl et G o o g (o
X3 S 3 <d>

Finding upper bound is an optimization problem!

Combining the constraints as y;(a) +y2(b) +ys3(c) + ya(d)
we should

& choose nonnegative y1, ¥, Y3, Y4 nonnegative
o satistying y1 = 1,91 + 42 + 43 = 2,92 + 3ys + ya = 3
o minimazing value of the bound vy + 2ys 4+ 9y3 + 3y,



The dual problem

Xr1+ I9
To + T3
T9 + 3x3
L3

f* = max 1+ 2x9+ 3x3 such that

A IAIAIA
W © o =

and

Y1

Y1+ Y2+ Y3
Yo + 3Y3 + Ya
Y1,Y2, Y3, Y4

d” = min y;+2y2+9y3+3y, such that

form a pair of dual problems!



Duality properties
a. Weak duality

Any feasible vector for the dual problem provides an
upper bound for all feasible vectors of the problem

(and vice-versal)

b. Strong duality

There always exists a feasible dual vector that certi-
fies optimality of the primal solutions

Therefore both problems have the same optimal value!

This optimal dual vector is an optimality certificate,
can be found by any means (guessing, simplex method,
etc.) and can be checked easily and independently



Duality summarized

Duality I1s a way to certify quality or optimality of
some feasible vectors

Computing dual certificate Is itself a linear
optimization problem

Some methods automatically compute the dual
optimal solution (such as the simplex method)

Dual variables have an economic interpretation
(they act as prices for the constraints)



Performance
07

Can Optimization
compete
with computers?



Progress for linear optimization

In 1947, Laderman solves a small diet problem (77
Ingredients x 9 nutriments) in 120 (wo)men-days
(with Dantzig’s simplex algorithm)

In 2008, linear problems with millions of
variables/constraints are routinely solved on
standard desktop computer
(provided enough memory is available)

Is it really remarkable ?
Modern computers are so powerful ...
Is this a simple consequence of Moore’s law, I.e.
speed doubles every 1.5 year ?



A 25-year comparison: 1987-2002

R. Bixby considers, for the same problem

 The 1987 version of his solver CPLEX
on a 1987 computer : 2.5 hours (~10 000 s)

 The same 1987 version CPLEX
on a 2002 cmputer : 10 seconds

This matches Moore’s law quite well



A 25-year comparison: 1987-2002

R. Bixby also compares on a larger problem:

 The 1987 version of CPLEX
on a 2002 computer: 8 hours (~30 000 s)

 The 2002 version of CPLEX
on a 2002 computer : 30 seconds

Algorithmic progress matches
technological progress: 1000x each

Total gain: 6 orders of magnitude in 15 years






Optimization 1s exciting
Can be used everywhere
Is actually used everywhere!

Provably difficult ... but we can manage

Many large-scale problems can be solved
efficiently in practice

A lot of research still going on



There is a lot more to say ...

Nonlinear Optimization (and convexity)
Discrete Optimization
Convex/Structured optimization

Combinatorial Optimization

Global Optimization

Heuristic and meta-heuristic methods
Average case analysis

etc.



Thank you for your attention



Can you match
an optimization solver ?
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