The many facets of mathematical Optimization

François Glineur

Fourth Benelux Mathematical Olympiad, April 22 2012

A plan?

What is optimization?

Is optimization useful?

Is optimization easy?

Is optimization always hard?

Can optimization help with your diet?

Can we trust optimization?

Can optimization beat computer chip makers?

1. What is Optimization?

Modelling → Decision

- 1. Model a real-word situation mathematically
- 2. Choose the **best** feasible decision

Decision → vector of variables

Best → objective fonction

Feasible → constraints

Variables+objective+constraints → optimisation A mathematical **tool** for decision making

Mathematical formulation

Variables: $x \in \mathbb{R}^n$

Objective function: $f: \mathbb{R}^n \mapsto \mathbb{R}: x \mapsto f(x)$

Constraints: $D \subseteq \mathbb{R}^n$

 $\min_{x \in \mathbb{R}^n} f(x)$ such that $x \in D$

A few simple examples

Find rectangular box of a given volume V with the minimum surface

$$min_{(a,b,c)\in R^3} 2ab + 2bc + 2ca \ s.t. \ abc = V$$

Find the diameter of a shape S in the plane

$$\max_{x \in R^2, y \in R^2} ||x - y|| \text{ s.t. } x \in S, y \in S$$

Find the fastest path to your destination (in your GPS device) – *binary variables*

Terminology

Applied Mathematics

- → Operations Research
 - = Quantitative methods for decision making
 - = Management Science
- = Industrial Engineering
 - Mathematical Programming
 - = Optimization = Optimisation
 - = Mathematical Optimization
 - = Optimalisation

Optimization: a vast domain

- Deterministic or stochastic problem
- Certain or uncertain data
- Single or multiple objective
- Explicit or black-box characteristics
- Continuous or discrete
- Linear or non-linear
- Constrained or unconstrained
- etc.

Presentation will focus on a small part

2. Is Optimization useful?

A wide variety of applications

- Planning and scheduling
 Production, timetabling, crew scheduling
- Design
 Structural design, network design
- Economics and finance
 Portfolio optimization, Nash equilibria
- Location and transport
 Facility location, routing, tours

INFORMS Edelman award 2008

Dutch railways

In 2006: Schedule optimisation for passengers, trains and personnel

After one year:

- Delays reduced by 17%
- Passengers increased by 10%
- Profit increased by € 40M

Engineering applications

- Airbus: structural optimization of wings (min weight for given strength)
- Radiotherapy: dose optimization (modulate a moving beam)
- Spectrum optimization in telecommunications (your next modem)
- Astrophysics : optimize diffraction masks (planet detection)
- And much much more ...

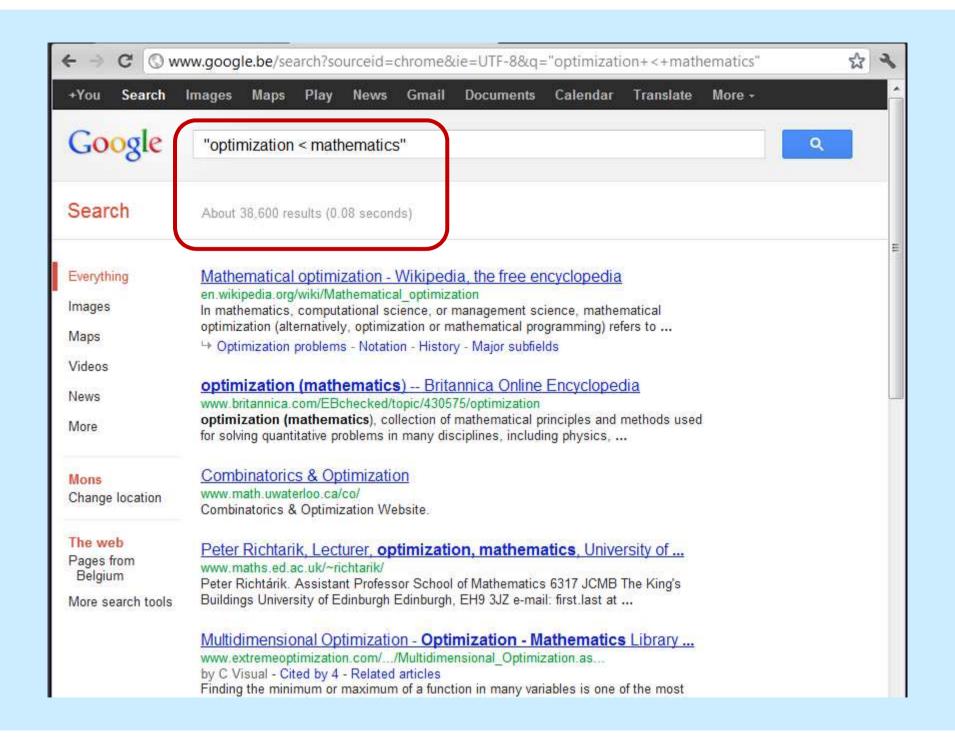
Optimization is important

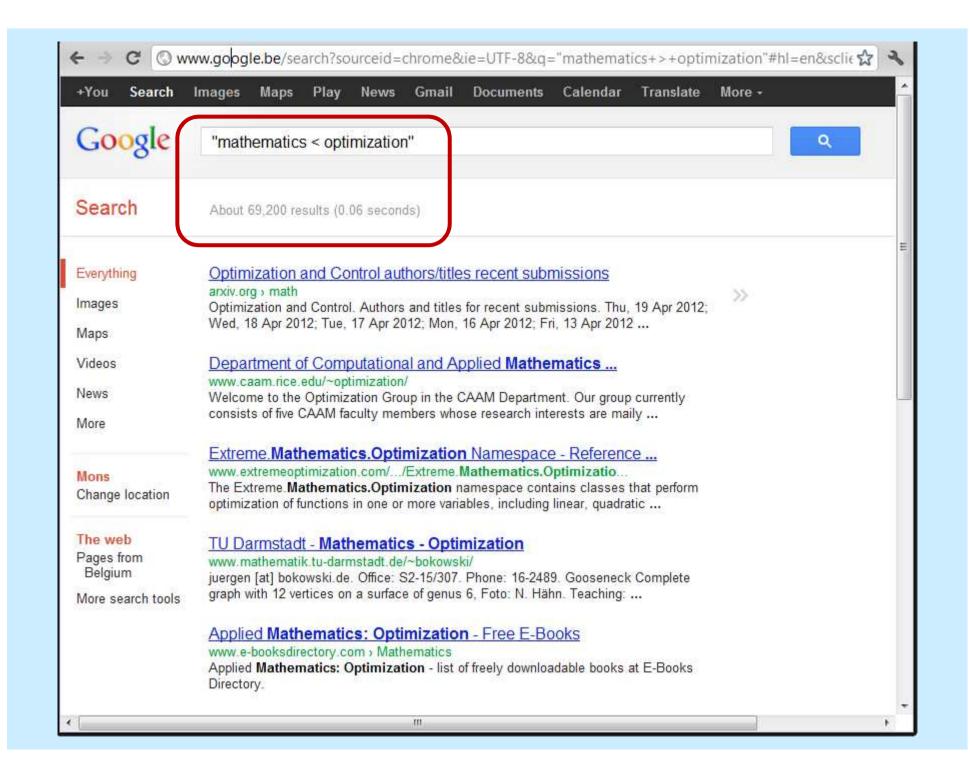
Mathematics

Versus

Optimization

Let us ask the modern Oracle ...





Googlefight: verdict

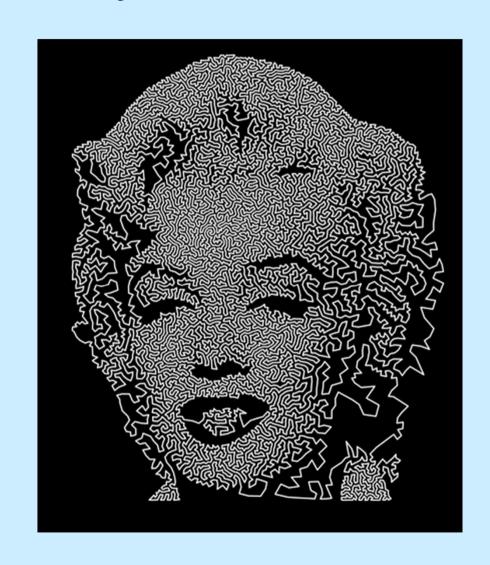
Mathematics < Optimization : 69 200

versus

Optimization < Mathematics : 38 600

Opt-Art, by R. Bosch

A single loop!



3. *Is Optimization easy?*

Algorithmic black-box optimization

$$f^* = \min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in D$

- Rules of the game: the black box
 - Give me points in $D: x^{(1)}, x^{(2)}, x^{(3)}, ...$
 - I will return the values of $f: f(x^{(1)}), f(x^{(2)}), \dots$
 - Nothing else is known about the function
- Goal: find a good solution quickly
 - As few evaluations as possible
 - With prescribed accuracy ε : $f(x^{(n)}) f^* < \varepsilon$

Looking at the worst case

Typical theorem:

For a given class of functions, any method must take at least some number of evaluations on some function

Must hold for any method

Main tool for proof: resisting oracle

Some games cannot be won

Typical theorem:

For a given class of functions, any method must take at least some number of evaluations on some function

- For some functions, game is always lost
 - discontinuous functions
 - functions with very quick variations
 - tiny and complicated domain D

Optimization is hard: the theorem

Among the class of functions with n variables defined on the unit box $\{x \mid 0 \le x_i \le 1 \ \forall i\}$ whose variation is not too large in the sense

$$|f(x) - f(y)| < L ||x - y||_{\infty}$$

for any method there exists a function such that accuracy ε is not reached before

$$\left\lfloor \frac{L}{2\varepsilon} \right\rfloor^n$$
 evaluations

Far-reaching consequences

 $\left\lfloor \frac{L}{2\varepsilon} \right\rfloor^n$ evaluations

Consider an easy problem with L=2 and $\mathcal{E} = 1\%$ Some 1-variable problem *must* take 100 iter. Some 10-variable problem *must* take 10^{20} iter. Life is too short for such problems!

- Uniform grid search is worst-case optimal
- Result does not really improve for smoother f

3. Is Optimization always hard?

Optimization is not always hard

No hope of guaranteeing resolution of optimization problems with 10 variables

Two ways to react:

Ignore theorem

Try you luck!

Nullify theorem

Force your luck! new problem class

A new class: linear optimization

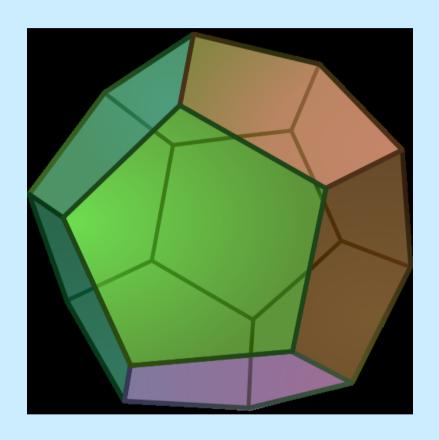
We voluntarily restrict ourselves to a problem class involving only linear functions

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in D$

Linear objective function f

Linear constraints, which gives polyhedron D

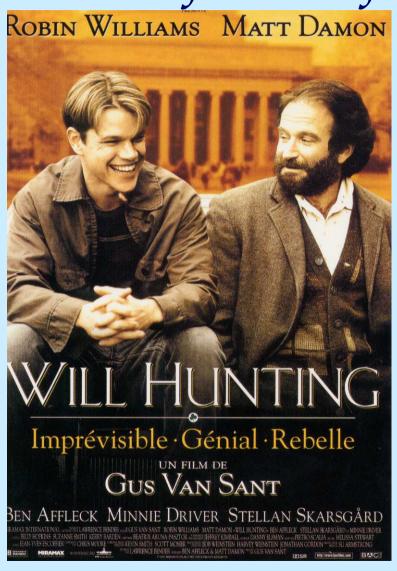
A polyhedron



Application examples:

Production problems, assignment problems, transport problems, flow problems, etc.

The father of linear optimization



Georges B. Dantzig (1914-2005) American statistician Stanford Professor

Originated the « difficult homework » urban legend

Simplex method

Dantzig's real contribution is not the definition of linear optimization but the invention of the **simplex method** to solve it

- Problem look continuous, but is in reality essentially combinatorial
- Optimal solution must lie on vertex of D
- Algebraic description of vertices + improving moves from vertex to vertex

Algorithmic complexity

An efficient algorithm must

- Solve the problem (at least approximately)
- In a finite amount of time (must eventually stop)
- Or, better: in an amount of time bounded by a function of the problem size

Essential distinction

polynomial-time complexity (= easy)

– exponential-time complexity (= hard)

Polynomial always beats exponential, eventually

n	n^5	2^n	$n^{5}/2^{n}$
20	3.05 seconds	1 second	3.05
40	1.7 minutes	12.1 days	9.3×10^{-5}
60	12.9 minutes	349 centuries	6.7×10^{-10}

General optimization is provable exponential Could linear optimization be polynomial?

Algorithmic complexity for linear optimization methods

Georges Dantzig (1914-2005)

Proposes in 1947 the simplex method for linear optimization, very efficient in practice but whose algorithmic complexity is unknown

- V. Klee et G. Minty (1972)
 Show that the simplex method is exponential in the worst case
- L. Khachyan (1978)

Proves that the ellipsoid method (due to Shor) is polynomial in the worst; it is however very slow in practice!

• N. Karmarkar (1984)

Proposes a new type of method :interior-point methods, that are both polynomial in the worst case and very efficient in practice (often more than the simplex method)

Optimization before Dantzig: a few pioneers

Simplex method is the start of modern era of optimization

- Leonid Kantorovich (1912-1986)
 Linear optimization en 1939! (Nobel prize in 1975 with Koopmans)
- John Von Neumann (1903-1957)
 Game theory (minimax theorem en 1928, link with linear optimiz.)
- Carl Friedrich Gauss (1777-1855)
 Steepest descent method (non-linear optimization)
- Leonhard Euler (1707-1783)
 Calculus of variations (infinite-dimensional optimization)
- Pierre de Fermat (1601-1665)
 Light: takes minimum-time path (already by Hero of Alexandria)
- Nature!
 In physics: least action principle, minimum energy principle

An example of linear optimization

or

Can optimization help with your diet?

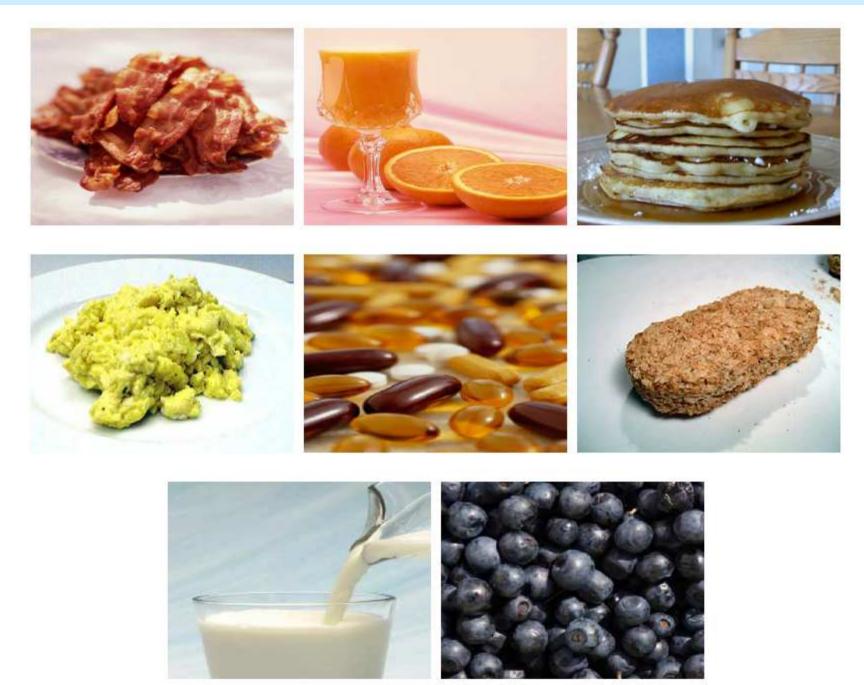
The diet problem

Eating not just a good breakfast, but an optimal breakfast.

Eight foods to choose from:

- 1. pancakes = x_1
- 2. milk = x_2
- 3. freshly squeezed orange juice = x_3
- 4. scrambled eggs = x_4
- 5. Weetabix, a high-fiber cereal = x_5
- 6. fresh blueberries = x_6
- 7. bacon = x_7
- 8. vitamin/mineral pills = x_8

Source: M. Wright



Source: M. Wright

Our goal is to find the cheapest breakfast satisfying daily fiber ≥ 120 , daily calcium ≥ 100 , and all x's ≥ 0 . (Can't eat -5 units of a food.)

food	fiber	calcium	cost
pancakes	5	10	3
milk	0	40	1
orange juice	4	5	5
eggs	8	0	3
Weetabix	100	20	10
blueberries	50	20	5
bacon	0	0	10
pills	30	400	2

Source: M. Wright

With this (apparently sensible) formulation, what's the optimal breakfast??

1.14 units of Weetabix and .19 units of vitamin/mineral pills.

Yuck. Not even milk for the Weetabix!

Source: M. Wright

The original diet problem

Compute the optimal daily diet for US soldiers Satisfy nutritional requirements Minimize the cost

77 types of food, 9 nutritional requirements Solved in 1947 by Jack Laderman's team in 120 man-days

Optimal cost found: \$39.69 per year

Duality

or

Can we trust optimization?

Trust an optimal solution?

Difference between solving

- A system of equations : $0 = f_1(x) = f_2(x) = ...$
- An optimization problem: min f(x)

How?

- For a system of equations: simply replace x in $f_1(x)$, $f_2(x)$, ...
- For an optimization problem : how ?

Generate bounds for linear optimization

Consider the small problem

$$f^* = \max x_1 + 2x_2 + 3x_3$$
 such that $\begin{cases} x_1 + x_2 \le 1 & (a) \\ x_2 + x_3 \le 2 & (b) \\ x_2 + 3x_3 \le 9 & (c) \\ x_3 \le 3 & (d) \end{cases}$

- a. Vector x=(1,0,2) is feasible and corresponds to objective value equal to 7
 - \Rightarrow lower bound $f^* > 7$
- b. Combine the constraints according to (a) + (c) $(x_1 + x_2) + (x_2 + 3x_3) \le 1 + 9 \Leftrightarrow x_1 + 2x_2 + 3x_3 \le 10$ \Rightarrow upper bound $f^* \le 10$

Finding better lower bounds

$$f^* = \max x_1 + 2x_2 + 3x_3$$
 such that $\begin{cases} x_1 + x_2 \le 1 & (a) \\ x_2 + x_3 \le 2 & (b) \\ x_2 + 3x_3 \le 9 & (c) \\ x_3 \le 3 & (d) \end{cases}$

a. Lower bound can be improved: find a better vector x = (2, -1, 3) gives an objective function equal to 9 \Rightarrow lower bound $f^* \geq 9$

To find better vectors we may use the simplex method

Finding better upper bounds

$$f^* = \max x_1 + 2x_2 + 3x_3 \text{ such that } \begin{cases} x_1 + x_2 \le 1 & (a) \\ x_2 + x_3 \le 2 & (b) \\ x_2 + 3x_3 \le 9 & (c) \\ x_3 \le 3 & (d) \end{cases}$$

- a. $x = (2, -1, 3) \Rightarrow \text{lower bound } f^* \geq 9$
- b. Upper bounds can also be improved: combining the constraints according to (a)+(b)+2(d) $x_1+x_2+x_3+2x_3 \le 1+2+2\times 3 \Leftrightarrow x_1+2x_2+3x_3 \le 9$ \Rightarrow upper bound $f^* \le 9 \Rightarrow (2,-1,3)$ is optimal!

How to find better upper bounds?

$$f^* = \max x_1 + 2x_2 + 3x_3$$
 such that $\begin{cases} x_1 + x_2 \le 1 & (a) \\ x_2 + x_3 \le 2 & (b) \\ x_2 + 3x_3 \le 9 & (c) \\ x_3 \le 3 & (d) \end{cases}$

Finding upper bound is an optimization problem!

Combining the constraints as $y_1(a) + y_2(b) + y_3(c) + y_4(d)$ we should

- \diamond choose nonnegative y_1, y_2, y_3, y_4 nonnegative
- \diamond satisfying $y_1 = 1, y_1 + y_2 + y_3 = 2, y_2 + 3y_3 + y_4 = 3$
- \diamond minimizing value of the bound $y_1 + 2y_2 + 9y_3 + 3y_4$

The dual problem

$$f^* = \max x_1 + 2x_2 + 3x_3$$
 such that $\begin{cases} x_1 + x_2 \le 1 & (a) \\ x_2 + x_3 \le 2 & (b) \\ x_2 + 3x_3 \le 9 & (c) \\ x_3 \le 3 & (d) \end{cases}$

and

$$d^* = \min y_1 + 2y_2 + 9y_3 + 3y_4 \text{ such that } \begin{cases} y_1 + y_2 + y_3 = 2 \\ y_2 + 3y_3 + y_4 = 3 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

form a pair of dual problems!

Duality properties

a. Weak duality

Any feasible vector for the dual problem provides an upper bound for all feasible vectors of the problem (and vice-versa!)

b. Strong duality

There *always* exists a feasible dual vector that certifies optimality of the primal solutions

Therefore both problems have the *same* optimal value!

This optimal dual vector is an optimality certificate, can be found by any means (guessing, simplex method, etc.) and can be checked easily and independently

Duality summarized

- Duality is a way to certify quality or optimality of some feasible vectors
- Computing dual certificate is itself a linear optimization problem
- Some methods automatically compute the dual optimal solution (such as the simplex method)
- Dual variables have an economic interpretation (they act as prices for the constraints)

Performance

Or

Can Optimization compete with computers?

Progress for linear optimization

In 1947, Laderman solves a small diet problem (77 ingredients x 9 nutriments) in 120 (wo)men-days (with Dantzig's simplex algorithm)

In 2008, linear problems with millions of variables/constraints are routinely solved on standard desktop computer (provided enough memory is available)

Is it really remarkable?

Modern computers are so powerful ...
Is this a simple consequence of Moore's law, i.e. speed doubles every 1.5 year?

A 25-year comparison: 1987-2002

- R. Bixby considers, for the same problem
- The 1987 version of his solver CPLEX on a 1987 computer: 2.5 hours (~10 000 s)
- The same 1987 version CPLEX on a 2002 cmputer : 10 seconds

This matches Moore's law quite well

A 25-year comparison: 1987-2002

- R. Bixby also compares on a larger problem:
- The 1987 version of CPLEX on a 2002 computer: 8 hours (~30 000 s)
- The 2002 version of CPLEX on a 2002 computer: 30 seconds

Algorithmic progress matches technological progress: 1000x each

Total gain: 6 orders of magnitude in 15 years

Summary

Optimization is exciting

- Can be used everywhere
- Is actually used everywhere!

Provably difficult ... but we can manage

- Many large-scale problems can be solved efficiently in practice
- A lot of research still going on

There is a lot more to say ...

- Nonlinear Optimization (and convexity)
- Discrete Optimization
- Convex/Structured optimization
- Combinatorial Optimization
- Global Optimization
- Heuristic and meta-heuristic methods
- Average case analysis
- etc.

Thank you for your attention

Can you match an optimization solver?

