
Optimization

The many facets of

François Glineur
Fourth Benelux Mathematical Olympiad, April 22 2012 

mathematical



A plan ? 

What is optimization ?

Is optimization useful ?

Is optimization easy ?

Is optimization always hard ?

Can optimization help with your diet ?

Can we trust optimization ?

Can optimization beat computer chip makers ?



1. 
What is Optimization ?



Modelling → Decision

1. Model a real-word situation mathematically
2. Choose the best feasible decision

Decision → vector of variables
Best → objective fonction
Feasible → constraints

Variables+objective+constraints → optimisation
A mathematical tool for decision making



Mathematical formulation

Variables : 

Objective function : 

Constraints : 



A few simple examples



Terminology

Applied Mathematics
Operations Research

=  Quantitative methods for decision making

=  Management Science
=  Industrial Engineering

Mathematical Programming
=  Optimization = Optimisation
=  Mathematical Optimization
=  Optimalisation

⊃

⊃



Optimization : a vast domain

• Deterministic or stochastic problem
• Certain or uncertain data
• Single or multiple objective
• Explicit or black-box characteristics
• Continuous or discrete
• Linear or non-linear
• Constrained or unconstrained
• etc.

Presentation will focus on a small part



2. 
Is Optimization useful ?



A wide variety of applications

• Planning and scheduling
Production, timetabling, crew scheduling

• Design
Structural design, network design

• Economics and finance
Portfolio optimization, Nash equilibria

• Location and transport
Facility location, routing, tours



INFORMS Edelman award 2008

Dutch railways

In 2006 : Schedule optimisation for 
passengers, trains and personnel

After one year :
• Delays reduced by 17%
• Passengers increased by 10%
• Profit increased by € 40M



Engineering applications

• Airbus : structural optimization of wings 
(min weight for given strength )

• Radiotherapy : dose optimization 
(modulate a moving beam)

• Spectrum optimization in 
telecommunications (your next modem)

• Astrophysics : optimize diffraction masks 
(planet detection)

• And much much more …



Optimization is important

Mathematics

Versus

Optimization

Let us ask the modern Oracle …







Googlefight : verdict

Mathematics < Optimization : 69 200

versus

Optimization < Mathematics : 38 600



Opt-Art, by R. Bosch

A single loop !



3. 
Is Optimization easy ?



Algorithmic black-box optimization

• Rules of the game: the black box
– Give me points in
– I will return the values of
– Nothing else is known about the function

• Goal: find a good solution quickly
– As few evaluations as possible
– With prescribed accuracy : 



Looking at the worst case

• Typical theorem: 
For a given class of functions, any
method must take at least some number
of evaluations on some function

• Must hold for any method

• Main tool for proof: resisting oracle



Some games cannot be won

• Typical theorem: 
For a given class of functions, any
method must take at least some number
of evaluations on some function

• For some functions, game is always lost
– discontinuous functions
– functions with very quick variations
– tiny and complicated domain



Optimization is hard: 
the theorem

Among the class of functions with variables
defined on the unit box  
whose variation is not too large in the sense

for any method there exists a function such
that accuracy is not reached before

evaluations



Far-reaching consequences

evaluations
Consider an easy problem with L=2 and    = 1%
Some 1-variable problem must take 100 iter.
Some 10-variable problem must take 1020 iter.
Life is too short for such problems!

• Uniform grid search is worst-case optimal
• Result does not really improve for smoother f



3. 
Is Optimization always hard ?



Optimization is not always hard

No hope of guaranteeing resolution of 
optimization problems with 10 variables

Two ways to react:

Ignore theorem

Try you luck!

Nullify theorem

Force your luck!
new problem class



A new class: linear optimization

We voluntarily restrict ourselves to a problem 
class involving only linear functions

Linear objective function f

Linear constraints, which gives polyhedron D



A polyhedron

Application examples:
Production problems, assignment problems, 

transport problems, flow problems, etc.



The father of linear optimization

Georges B. Dantzig
(1914-2005) 

American statistician
Stanford Professor

Originated the 
« difficult homework » 

urban legend



Simplex method

Dantzig’s real contribution is not the definition 
of linear optimization but the invention of 
the simplex method to solve it

• Problem look continuous, but is in reality 
essentially combinatorial

• Optimal solution must lie on vertex of D
• Algebraic description of vertices + 

improving moves from vertex to vertex



Algorithmic complexity

An efficient algorithm must
– Solve the problem (at least approximately)
– In a finite amount of time (must eventually stop)
– Or, better: in an amount of time bounded by a 

function of the problem size

Essential distinction
– polynomial-time complexity (= easy)
– exponential-time complexity (= hard)



Polynomial always beats 
exponential, eventually

General optimization is provable exponential
Could linear optimization be polynomial ?



Algorithmic complexity
for linear optimization methods

• Georges Dantzig (1914-2005)
Proposes in 1947 the simplex method for linear optimization, very 

efficient in practice but whose algorithmic complexity is unknown

• V. Klee et G. Minty (1972)
Show that the simplex method is exponential in the worst case

• L. Khachyan (1978)
Proves that the ellipsoid method (due to Shor) is polynomial in the 

worst ; it is however very slow in practice!

• N. Karmarkar (1984)
Proposes a new type of method :interior-point methods, that are both 

polynomial in the worst case and very efficient in practice (often 
more than the simplex method)



Optimization before Dantzig: 
a few pioneers

Simplex method is the start of modern era of optimization
• Leonid Kantorovich (1912-1986)

Linear optimization en 1939! (Nobel prize in 1975 with Koopmans)

• John Von Neumann (1903-1957)
Game theory (minimax theorem en 1928, link with linear optimiz.)

• Carl Friedrich Gauss (1777-1855)
Steepest descent method (non-linear optimization)

• Leonhard Euler (1707-1783)
Calculus of variations (infinite-dimensional optimization)

• Pierre de Fermat (1601-1665)
Light: takes minimum-time path (already by Hero of Alexandria ) 

• Nature !
In physics: least action principle, minimum energy principle



An example of linear 
optimization

or

Can optimization help 
with your diet ? 



The diet problem

Source: M. Wright



Source: M. Wright



Source: M. Wright



Source: M. Wright



The original diet problem

Compute the optimal daily diet for US soldiers
Satisfy nutritional requirements 
Minimize the cost

77 types of food, 9 nutritional requirements
Solved in 1947 by Jack Laderman’s team in 

120 man-days

Optimal cost found: $39.69 per year



Duality

or

Can we trust optimization ?



Trust an optimal solution ?

Difference between solving
– A system of equations :    0 = f1(x) = f2(x) = …
– An optimization problem:  min f(x)

How  ?
– For a system of equations:

simply replace x in f1(x), f2(x), …
– For an optimization problem : how ?
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Generate bounds for linear optimization

Consider the small problem

f ∗ = max x1 + 2x2 + 3x3 such that

x1 + x2 ≤ 1 (a)
x2 + x3 ≤ 2 (b)
x2 + 3x3 ≤ 9 (c)

x3 ≤ 3 (d)

a. Vector x = (1, 0, 2) is feasible and corresponds to
objective value equal to 7

⇒ lower bound f ∗ ≥ 7

b. Combine the constraints according to (a) + (c)

(x1 +x2) + (x2 + 3x3) ≤ 1 + 9⇔ x1 + 2x2 + 3x3 ≤ 10

⇒ upper bound f ∗ ≤ 10
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Finding better lower bounds

f ∗ = max x1 + 2x2 + 3x3 such that

x1 + x2 ≤ 1 (a)
x2 + x3 ≤ 2 (b)
x2 + 3x3 ≤ 9 (c)

x3 ≤ 3 (d)

a. Lower bound can be improved: find a better vector

x = (2,−1, 3) gives an objective function equal to 9

⇒ lower bound f ∗ ≥ 9

To find better vectors we may use the simplex method
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Finding better upper bounds

f ∗ = max x1 + 2x2 + 3x3 such that

x1 + x2 ≤ 1 (a)
x2 + x3 ≤ 2 (b)
x2 + 3x3 ≤ 9 (c)

x3 ≤ 3 (d)

a. x = (2,−1, 3) ⇒ lower bound f ∗ ≥ 9

b. Upper bounds can also be improved:

combining the constraints according to (a)+(b)+2(d)

x1+x2+x2+x3+2x3 ≤ 1+2+2×3⇔ x1+2x2+3x3 ≤ 9

⇒ upper bound f ∗ ≤ 9 ⇒ (2,−1, 3) is optimal!
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How to find better upper bounds?

f ∗ = max x1 + 2x2 + 3x3 such that

x1 + x2 ≤ 1 (a)
x2 + x3 ≤ 2 (b)
x2 + 3x3 ≤ 9 (c)

x3 ≤ 3 (d)

Finding upper bound is an optimization problem!

Combining the constraints as y1(a)+y2(b)+y3(c)+y4(d)
we should

� choose nonnegative y1, y2, y3, y4 nonnegative

� satisfying y1 = 1, y1 + y2 + y3 = 2, y2 + 3y3 + y4 = 3

� minimizing value of the bound y1 + 2y2 + 9y3 + 3y4
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The dual problem

f ∗ = max x1 + 2x2 + 3x3 such that

x1 + x2 ≤ 1 (a)
x2 + x3 ≤ 2 (b)
x2 + 3x3 ≤ 9 (c)

x3 ≤ 3 (d)

and

d∗ = min y1+2y2+9y3+3y4 such that

y1 = 1
y1 + y2 + y3 = 2
y2 + 3y3 + y4 = 3
y1, y2, y3, y4 ≥ 0

form a pair of dual problems!
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Duality properties

a. Weak duality

Any feasible vector for the dual problem provides an
upper bound for all feasible vectors of the problem

(and vice-versa!)

b. Strong duality

There always exists a feasible dual vector that certi-
fies optimality of the primal solutions

Therefore both problems have the same optimal value!

This optimal dual vector is an optimality certificate,
can be found by any means (guessing, simplex method,
etc.) and can be checked easily and independently



Duality summarized

• Duality is a way to certify quality or optimality of 
some feasible vectors

• Computing dual certificate is itself a linear 
optimization problem

• Some methods automatically compute the dual 
optimal solution (such as the simplex method)

• Dual variables have an economic interpretation
(they act as prices for the constraints)



Performance

or

Can Optimization 
compete 

with computers?



Progress for linear optimization

In 1947, Laderman solves a small diet problem (77 
ingredients x 9 nutriments) in 120 (wo)men-days 
(with Dantzig’s simplex algorithm)

In 2008, linear problems with millions of 
variables/constraints are routinely solved on 
standard desktop computer
(provided enough memory is available)

Is it really remarkable ?
Modern computers are so powerful …
Is this a simple consequence of Moore’s law, i.e. 
speed doubles every 1.5 year ?



A 25-year comparison: 1987-2002

R. Bixby considers, for the same problem

• The 1987 version of his solver CPLEX 
on a 1987 computer : 2.5 hours (~10 000 s)

• The same 1987 version CPLEX 
on a 2002 cmputer : 10 seconds

This matches Moore’s law quite well



A 25-year comparison: 1987-2002

R. Bixby also compares on a larger problem:

• The 1987 version of CPLEX 
on a 2002 computer: 8 hours (~30 000 s)

• The 2002 version of CPLEX 
on a 2002 computer : 30 seconds

Algorithmic progress matches 
technological progress: 1000x each

Total gain: 6 orders of magnitude in 15 years



Summary



Optimization is exciting

• Can be used everywhere
• Is actually used everywhere!

• Provably difficult … but we can manage

• Many large-scale problems can be solved
efficiently in practice

• A lot of research still going on



There is a lot more to say … 

• Nonlinear Optimization (and convexity)
• Discrete Optimization
• Convex/Structured optimization

• Combinatorial Optimization
• Global Optimization
• Heuristic and meta-heuristic methods
• Average case analysis
• etc.



Thank you for your attention



Can you match 
an optimization solver ?



64 
squares!


