omb
Menu principal
Sujets d'articles
OMB 2012 Finale MINI Question 2 - Solution officielle Informations | BxMO 2017 | SBPM  
OMB 2012 Finale MINI Question 2 - Solution officielle
719 vues  | Retourner à la liste des questions

Question :

Soit un point sur un cercle de centre et de rayon .

(a) Soit encore un point du cercle, tel que . La perpendiculaire à par recoupe le cercle en . Le quadrilatère est-il (i) un trapèze ? (ii) un parallélogramme ? (iii) un losange ? (iv) un rectangle ? (v) un carré ? Justifier.

(b) Soit encore un point du cercle, tel que . La perpendiculaire à par recoupe le cercle en . Le quadrilatère est-il (i) un trapèze ? (ii) un parallélogramme ? (iii) un losange ? (iv) un rectangle ? (v) un carré ? Justifier.

(c) Pour quelle mesure de l'angle le quadrilatère a-t-il une aire de  ?



Solution officielle :




(a) Les segments , et sont des rayons et on sait que et ont la même longueur. Ainsi



Le triangle est dès lors équilatéral et sa hauteur est aussi une médiatrice; celle du segment . Le point appartenant à cette médiatrice, et, par (1), . Le quadrilatère est donc un losange. Le triangle étant équilatéral, et le quadrilatère n'est pas un rectangle (et donc pas un carré).

(b) Puisque , le quadrilatère n'est pas un losange (et donc pas un carré). De plus, les diagonales sont perpendiculaires et donc il n'est pas non plus un parallélogramme (et donc pas un rectangle).

Les triangles et sont isocèles en puisque et donc . Un rayon perpendiculaire à une corde la coupant en son milieu, et



L'amplitude de l'angle entre deux côtés opposés est donc et ceux-ci ne sont donc pas parallèles; le quadrilatère n'est dès lors pas un trapèze.

Puisque ses diagonales sont perpendiculaires et se coupent au milieu de l'une d'elles, c'est un cerf-volant.


(c) L'aire d'un cerf-volant s'obtenant en prenant la moitié du produit de ses diagonales et , il faut que . La diagonale mesurant , mesure elle aussi . Ainsi est équilatéral et et par symétrie . Au point précédent, on a vu que les triangles et sont isocèles, et donc



et l'angle mesure .



Revenir à la question


 
Les commentaires appartiennent à leurs auteurs. Nous ne sommes pas responsables de leur contenu.
Membres
Prénom :

Nom :

Mot de passe : 

Conserver la connexion

Récupérer mot de passe
Recherche
Le site officiel de l'Olympiade Mathématique Belge
Contact webmasters :