
Re : Valeurs approchées de pi et de e |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Pour info la théorie des séries de Fourier peuvent te donner des formules du type:
Mais utiliser cette formule s'avère laborieux car si tu additionne 100 termes tu n'obtiens qu'une approximation grossière de La série converge très lentement, et l'article suivant te donne par exemple une méthode pour en accélérer la convergence: http://plus.maths.org/content/how-add-quickly
Contribution du : 15/08/2013 19:22
|
|
![]() |
Re : Résultats? |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Citation :
Premièrement on dit "Wépionnais". Deuxièmement, "enfin des cours de math qui ne vous donneront pas envie de dormir", c'est un peu osé. Perso moi en humanité j'avais un cours de math où je ne m'ennuyais jamais. Et d'une certaine manière, les cours de Wépions sont tellement crevant qu'ils donnent envie de dormir :p Sinon c'est vrai que les soirées sont chouettes (mais faut se rappeler quand même que faut se lever à 8h00 pour aller aux cours, et que toute grass'mat' est exclue), on rencontre des gens sympas, et la BxMO ou l'IMO sont vraiment de chouettes expériences, donc ça mérite d'être tenté.
Contribution du : 30/04/2012 20:36
|
|
![]() |
Re : Préparation à la demi-finale |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Juste pour les questions E08 Q12 et D11 Q18:
et Ca ne change rien à ce que Victor a fait, c'est juste pour dire que dans ce genre de problème, effectuer la division euclidienne donne tout de suite les solutions et de manière simple. Le problème est toujours du style
Contribution du : 27/02/2012 20:33
|
|
![]() |
Re : Questions omb |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Citation :
Il s'agit de choisir 2 chiffres parmi les 7 qui seront des 8, les autres étant des 9. Le nombre de possibilités est donc le coefficient binômial Si tu ne connais pas les coefficients binômiaux, instinctivement il y a 7 possibilités pour le premier 8 et donc 6 possibilités pour le second. Mais il faut diviser le produit
Contribution du : 17/01/2012 20:35
|
|
![]() |
Re : Questions omb |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Personnellement je trouve que pour la 3), tester les solutions est une perte de temps.
On remarque assez vite que On voit tout de suite que
Contribution du : 17/01/2012 20:29
|
|
![]() |
Re : question midi |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
La relation de congruence est très utile dans les problèmes d'olympiades. Pour info:
Pour a et b entiers, Pour En effet, elle est réflexive ( Des propriétés intéressantes peuvent être utilisée: Si alors et C'est cette dernière propriété que Nicolas utilise dans le problème pour calculer la valeur des puissances de 2 juste en multipliant les restes successivement par 2 et en prenant leur valeur modulo 13. Pour info, les restes de puissance d'un entier modulo n'importe quel autre entier sont toujours périodiques. Cela peut être très utile dans pas mal de problèmes de number theory. D'où Nicolas a remarqué que la valeur de On remarque alors comme l'a bien fait Nicolas que
Contribution du : 13/01/2012 21:50
|
|
![]() |
Re : Plusieurs questions demi-final. |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Ca me dit effectivement quelque chose, mais je connaissais pas la notation.
Contribution du : 30/12/2011 21:06
|
|
![]() |
Re : Plusieurs questions demi-final. |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Je comprend pas trop ce que tu entends par:
C'est une notation que je comprend pas trop. Comment la valeur modulo p peut valoir un nombre A moins que tu n'ais voulu écrire
Contribution du : 30/12/2011 20:19
|
|
![]() |
Re : Plusieurs questions demi-final. |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Citation :
Je connais le théorème de Fermat. Je voulais juste dire que c pas pcq Je me trompe? D'où je me dis que si Ou alors quelque chose m'échappe et ca fait trop longtemps que je ne me suis pas intéressé à la théorie des nombres.
Contribution du : 29/12/2011 20:44
|
|
![]() |
Re : Plusieurs questions demi-final. |
||
---|---|---|
Groupe Z
![]() ![]() Inscrit:
25/10/2009 19:43 De Namur
Groupe :
Utilisateurs enregistrés OMI Groupe Z Post(s):
269
|
Citation :
Tu pense qu'il existe beaucoup de nombres premiers p>2 tels que 2^[(p-1)/2] = 1 mod p ?
Contribution du : 29/12/2011 13:07
|
|
![]() |