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Solutions

Problem 1. Does there exist a function f : R→R such that

f
(
x2 + f (y)

)= f (x)2 − y

for all x, y ∈R?

Solution. There does not exist such a function. Let us suppose by contradiction it does. By
substituting x ← 0, we get

f ( f (y)) = f (0)2 − y

for all y ∈R. Since the right-hand side is bijective, this implies that f is also bijective. Taking y ← 0,
we get

f
(
x2 + f (0)

)= f (x)2

for all x ∈R and so f (−x)2 = f (x2 + f (0)) = f (x)2. Since f is injective, we get f (−x) =− f (x) for all
x ̸= 0. Since f is a surjection, there exists r ∈R such that f (r ) = 0. If r ̸= 0, f (−r ) =− f (r ) = 0 = f (r )
contradicting the fact that f is injective. So r = 0 and f (0) = 0. Substituting (x, y) ← (1,0) yields
f (1) = f (1)2 and so f (1) = 1 since f (0) = 0 and f is injective. Taking (x, y) ← (0,1), we finally get
1 = f ( f (1)) =−1 which is the desired contradiction.

Alternative solution We observe that, for all y, z ∈R, we have

z Ê f (y) =⇒ f (z) ≥−y.

Indeed, we can take x =√
z − f (y) and get f (z) = f (x)2 − y Ê−y . We deduce that limz→+∞ f (z) =

+∞. Indeed, for any K ∈R, we have z Ê f (−K ) =⇒ f (z) Ê K .
Let us now fix x, and let y → +∞. We have x2 + f (y) → +∞, hence f (x2 + f (y)) → +∞. On the
other side, we have f (x)2 − y →−∞, a contradiction.



Problem 2. Let N Ê 2 be a natural number. At a mathematical olympiad training camp, the same
N courses are organised every day. Each student takes exactly one of the N courses each day. At
the end of the camp, every student has taken each course exactly once, and any two students took
the same course on at least one day, but took different courses on at least one other day. What is,
in terms of N , the largest possible number of students at the camp?

Solution. The largest number of students at the camp is (N −1)!. Since each student takes ex-
actly one course each day and, at the end, has taken each course exactly once, the schedule of a
student can be represented by a permutation of the set of the N courses. To show that (N −1)! is
possible, we can e.g. assign to each of the (N −1)! students a unique permutation of the N −1 first
courses and making them all take the N -th course on the last day. It is easy to observe that such a
construction satisfies the properties of the statement.
To prove that, for a set S of students, one has |S| É (N −1)!, one first subdivides the set of permu-
tations into disjoint subsets of size N . Two permutations are said to be in the same subset if and
only if one can be obtained from the other by cyclically permute the order of the course. Clearly,
this is a well-defined subdivision since cyclically permuting twice the order of the courses can be
obtained by cyclically permute them only once. Moreover, each of these subsets contains exactly
N permutations since there are N cycles of length N . There are thus N !

N = (N −1)! such subsets. If
|S| > (N −1)!, two students will have their associated permutations in the same subset. However,
they cannot be the same permutation (otherwise the two students took the same course every
day), and they cannot be obtained by a non-trivial cyclic permutation from each other (otherwise
the two students never took the same course).



Problem 3. Let ABC be a triangle with incentre I and circumcircle Ω. Let D,E ,F be the mid-
points of the arcs ÙBC ,ÙC A,ÙAB of Ω not containing A,B ,C , respectively. Let D ′ be the point of Ω
diametrically opposite to D . Show that I , D ′, and the midpoint M of [EF ] lie on a line.

Solution.

A

B

C

Ω

O

I

D

E F

D ′

By definition of D , E and F , we know that I D , I E and I F are the angle bisectors of ABC . Using
angles inΩ, we can compute

�EF I = �EFC = �EBC =
�ABC

2
= 90◦−

�AC B

2
−

�B AC

2
= 90◦− �FC B − �B AD = 90◦− �F EB − �BED = 90◦− �F ED = �D ′EF

proving that D ′E ∥ F I . Moreover, we can also compute

�F E I = �F EB = �FC B =
�AC B

2
= 90◦−

�ABC

2
−

�C AB

2
= 90◦− �EBC − �C AD = 90◦− �EFC − �C F D = 90◦− �EF D = �D ′F E

proving that E I ∥ D ′F . Therefore, ED ′F I is a parallelogram and its diagonals intersect in their
midpoints, proving that D ′I contains M .



Alternative solution

A

B

C

Ω

O

I

D

E F

D ′IB

IC

I A

By definition of D , E and F , we know that I D , I E and I F are the angle bisectors of ABC . If D ′ = A,

this means that �O AB = 90◦− �AC B = �C AB
2 and ABC is isosceles in A. In that case, the symmetry

with respect to AI sends E to F and so M ∈ AI . We can thus suppose that D ′ ̸= A.
Let us consider I A, IB and IC the excenters of ABC . The lines IB AIC , IC B I A and I AC IB are thus the
exterior bisectors of the triangle. Hence, IB IC ⊥ AI A and, since �D ′AD = 90◦, one has D ′ ∈ IB IC . In
the triangle I A IB IC , the points A, B and C are the feet of the heights andΩ is thus the Euler circle
of I A IB IC . Since D ′ ∈ [IB IC ]∩Ω and D ′ ̸= A, it is the midpoint of [IB IC ]. Moreover, E and F , being
on the Euler circle and the heights, there are the midpoints of [IB I ] and [IC I ] respectively. The
homothety of centre I and ratio 1

2 sends IB on E and IC on F . It thus also sends D ′ on M , proving
that D ′, M and I are collinear.



Problem 4. Let a0, a1, . . . , a10 be integers such that, for each i ∈ {0,1, . . . ,2047}, there exists a sub-
set S ⊆ {0,1, . . . ,10} with ∑

j∈S
a j ≡ i (mod 2048).

Show that for each i ∈ {0,1, . . . ,10}, there is exactly one j ∈ {0,1, . . . ,10} such that a j is divisible by
2i but not by 2i+1.

Note:
∑
j∈S

a j is the summation notation, for instance,
∑

j∈{2,5}
a j = a2 +a5, while, for the empty set ∅,

one defines
∑

j∈∅
a j = 0.

Solution. We denote by ν2(a) the valuation 2-adic of the integer a. Let us prove by induction
the more general statement that, for n ∈ N>0, if a0, a1, . . . , an−1 are integers such that, for each
i ∈ {0,1, . . . ,2n − 1}, there exists a subset S ⊆ {0,1, . . . ,n − 1} with

∑
j∈S a j ≡ i (mod 2n), then, for

each i ∈ {0,1, . . . ,n −1}, there is exactly one j ∈ {0,1, . . . ,n −1} such that ν2(a j ) = i . The result then
follows by setting n = 11. The case n = 1 is trivial.
We suppose by induction that the result is true for n −1 for prove it for n Ê 2. Let us first notice
that, since there are 2n elements in {0,1, . . . ,2n −1} and 2n subsets of {0,1, . . . ,n −1}, for each i ∈
{0,1, . . . ,2n − 1}, there exists exactly one Si ⊆ {0,1, . . . ,n − 1} such that

∑
j∈Si

a j ≡ i (mod 2n). By
summing all these sums for all i , we obtain

2n−1∑
i=0

∑
j∈Si

a j ≡
2n−1∑
i=0

i = 2n · (2n −1)

2
= 2n−1 · (2n −1) (mod 2n).

For a fixed j ∈ {0,1, . . . ,n − 1}, a j appears in exactly 2n−1 of these sums (since each of the n − 1
remaining indices may or may not be in Si ). Therefore,

2n−1 ·
n−1∑
j=0

a j =
2n−1∑
i=0

∑
j∈Si

a j ≡ 2n−1 · (2n −1) (mod 2n)

which is equivalent to
n−1∑
j=0

a j ≡ 2n −1 ≡ 1 (mod 2).

Since
∑n−1

j=0 a j is odd, at least one of the a j ’s is odd.
Let us suppose by contradiction that at least two of them are odd. We now sum all the

∑
j∈Si

a j for
which

∑
j∈Si

a j (or, equivalently, i ) is even:∑
i∈{0,...,2n−1}

i is even

∑
j∈Si

a j ≡
∑

i∈{0,...,2n−1}
i is even

i = 2n−1 · (2n−1 −1) (mod 2n)

For a fixed j ∈ {0,1, . . . ,n −1}, a j appears in exactly 2n−2 of these sums. Indeed, since there is at
least one k ∈ {0,1, . . . ,n−1}\{ j } such that ak is odd, one can consider any S ⊆ {0,1, . . . ,n−1}\{ j ,k},
add j to it, and potentially also k in order to make the partial sum even (exactly one possibility for
each such S). Therefore,

2n−2 ·
n−1∑
j=0

a j =
∑

i∈{0,...,2n−1}
i is even

∑
j∈Si

a j ≡ 2n−1 · (2n−1 −1) (mod 2n)



or equivalently
n−1∑
j=0

a j ≡ 2 · (2n−1 −1) (mod 4).

Hence
∑n−1

j=0 a j is even, which is a contradiction. Therefore, there is exactly one k ∈ {0,1, . . . ,n −1}
such that ak is odd.
A sum

∑
j∈S a j is odd if and only if k ∈ S. Moreover, the sums

∑
j∈S a j for which k ∉ S cover all the

even numbers modulo 2n . Thus, omitting ak , the n −1 integers a0
2 , . . . , an−1

2 satisfy the condition
of the statement. By the induction hypothesis, for each i ∈ {0,1, . . . ,n − 2}, there is exactly one

j ∈ {0,1, . . . ,n −1} \ {k} such that ν2

(
a j

2

)
= i , i.e., ν2(a j ) = i +1. Since ν2(ak ) = 0, this concludes the

proof.

Remark: If one considers the sum of all
∑

j∈Si
a j such that i is odd, one obtains, in the case where

at least two ai ’s are odd, that 2n−2 ·∑n−1
j=0 a j ≡ 0 (mod 2n) also reaching a contradiction.

Alternative solution We do the same induction as in the main Solution. If all a j are even, then
all the sums are even, contradicting the hypothesis. Therefore, without loss of generality, we can
assume that a0 is odd. For each i ∈ {0,1,2, . . . ,2n − 1}, let S′

i ⊆ {0,1, . . . ,n − 1} be the subset such
that

∑
j∈S′

i
a j ≡ i · a0 (mod 2n) (this subset exists by the hypothesis and is unique since there are

exactly 2n subsets of {0,1, . . . ,n −1}). By definition, one has S′
0 =; and S′

1 = {0}.
Let us prove by induction that, for each i ∈ {0,1, . . . ,2n−1−1}, one has 0 ∉ S′

2i but 0 ∈ S′
2i+1. The case

i = 0 is trivial. For i > 0, if we suppose that 0 ∈ S′
2i−1, we prove that 0 ∉ S′

2i . Indeed, if 0 ∈ S′
2i , then∑

j∈S′
2i \{0} a j ≡ 2i a0 −a0 = (2i −1)a0 ≡∑

j∈S′
2i−1

a j (mod 2n) and so S′
2i \ {0} = S′

2i−1 by uniqueness.

But 0 ∈ S′
2i−1 so this is a contradiction, proving that 0 ∉ S′

2i . Then,
∑

j∈S′
2i∪{0} a j ≡ 2i a0 + a0 =

(2i +1)a0 ≡∑
j∈S′

2i+1
a j (mod 2n). By uniqueness, S′

2i ∪ {0} = S′
2i+1 and so 0 ∈ S′

2i+1.
Since a0 is odd, it is invertible modulo 2n and so 0, a0, 2a0,. . . , (2n −1)a0 is a permutation of 0, 1,
2,. . . , 2n −1 modulo 2n . This shows that the subsets S′

0, S′
2, S′

4,. . . , S′
2n−2 are all distinct. There are

thus 2n−1 subsets S′
2i and they are a precisely the subsets of {1,2, . . . ,n−1} (since there are also 2n−1

such subsets). Moreover, their corresponding sums are all even. Since this list of subsets contains
{1}, {2},. . . , {n −1}, this shows that a1, a2, . . . , an−1 are all even.
We then conclude the induction as in the main Solution.

Alternative solution We do the same induction as in the main Solution (except that we prove
that for each i ∈ {0,1, . . . ,n −1}, there exists j ∈ {0,1, . . . ,n −1} with ν2(a j ) = i , uniqueness follows
immediately). For the induction step, let us consider the polynomial

P (X ) =
n−1∏
j=0

(
X a j +1

)
.

The condition in the statement implies that

P (X ) ≡
2n−1∑
i=0

X i (mod X 2n −1).

Since
2n−1∑
i=0

X i = X 2n −1

X −1
= X 2n−1 −1

X −1
·
(

X 2n−1 +1
)

,

we know that P (X ) is divisible by X 2n−1 + 1. Let ω ∈ C be a primitive 2n-th root of unity. Thus
ω2n−1 =−1 and P (ω) = 0. There exists thus j ∈ {0,1, . . . ,n −1} such that ωa j =−1. This means that
a j = (2k+1)2n−1 for some integer k, i.e., ν2(a j ) = n−1. It is then obvious that the other ones satisfy
the property for n −1 and we conclude by the inductive hypothesis.
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